802 research outputs found

    Antidepressant prescribing for adult people with an intellectual disability living in England.

    Get PDF
    The prescribing of psychotropic medications for people with an intellectual disability has changed. In many locations across England, antidepressants have become the most widely prescribed psychotropic. In the context of the current NHS England STOMP programme to reduce inappropriate psychotropic prescribing for people with intellectual disability, there is an urgent need to understand whether this change reflects evidence-based use of the medications involved. There has been little analysis into the benefits or problems associated with the change and whether it is of concern. This paper offers a variety of possible explanations and opportunities to improve clinical practice and policy

    A novel method for the injection and manipulation of magnetic charge states in nanostructures

    Get PDF
    Realising the promise of next-generation magnetic nanotechnologies is contingent on the development of novel methods for controlling magnetic states at the nanoscale. There is currently demand for simple and flexible techniques to access exotic magnetisation states without convoluted fabrication and application processes. 360 degree domain walls (metastable twists in magnetisation separating two domains with parallel magnetisation) are one such state, which is currently of great interest in data storage and magnonics. Here, we demonstrate a straightforward and powerful process whereby a moving magnetic charge, provided experimentally by a magnetic force microscope tip, can write and manipulate magnetic charge states in ferromagnetic nanowires. The method is applicable to a wide range of nanowire architectures with considerable benefits over existing techniques. We confirm the method's efficacy via the injection and spatial manipulation of 360 degree domain walls in Py and Co nanowires. Experimental results are supported by micromagnetic simulations of the tip-nanowire interaction.Comment: in Scientific Reports (2016

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Three-nucleon mechanisms in photoreactions

    Full text link
    The 12^{12}C(γ,ppn)(\gamma,ppn) reaction has been measured for Eγ_{\gamma}=150-800 MeV in the first study of this reaction in a target heavier than 3^3He. The experimental data are compared to a microscopic many body calculation. The model, which predicts that the largest contribution to the reaction arises from final state interactions following an initial pion production process, overestimates the measured cross sections and there are strong indications that the overestimate arises in this two-step process. The selection of suitable kinematic conditions strongly suppresses this two-step contribution leaving cross sections in which up to half the yield is predicted to arise from the absorption of the photon on three interacting nucleons and which agree with the model. The results indicate (γ,3N)(\gamma,3N) measurements on nuclei may be a valuable tool for obtaining information on the nuclear three-body interaction.Comment: 5 pages, 3 figure

    From Vertices to Vortices in magnetic nanoislands

    Get PDF
    Recent studies in magnetic nanolithography show that a variety of complex magnetic states emerge as a function of a single magnetic island's aspect ratio. We propose a model which, in addition to fitting experiments, predicts magnetic states with continuous symmetry at particular aspect ratios and reveals a duality between vortex and vertex states. Our model then opens new means of engineering novel types of artificial spin systems, and their application to complex magnetic textures in devices and computing.Comment: 3 pages + epsilon + 18 supplementary materia

    Antiseizure medications prescribing for behavioural and psychiatric concerns in adults with an intellectual disability living in England

    Get PDF
    Summary Antiseizure medications (ASMs) are the second most widely prescribed psychotropic for people with intellectual disabilities in England. Multiple psychotropic prescribing is prevalent in almost half of people with intellectual disabilities on ASMs. This analysis identifies limited evidence of ASM benefit in challenging behaviour management and suggests improvements needed to inform clinical practice.</jats:p

    Signatures of filamentary superconductivity in antiferromagnetic BaFe2As2 single crystals

    No full text
    In this paper, we present ac susceptibility and magnetotransport measurements on aged single crystals of the ferropnictide parent compound, BaFe2As2 with a paramagnetic-to-antiferromagnetic transition temperature of 134 K. The ac susceptibility shows the clear onset of a partial diamagnetic response with an onset temperature, commensurate with a subtle downturn in resistivity at approximately 20 K. Below 20 K the magnetotransport shows in-plane anisotropy, magnetic-field history dependence and a hysteretic signature. Above 20 K the crystals show the widely reported high-field linear magnetoresistance. An enhanced noise signature in ac susceptibility is observed above 20 K, which varies in character with amplitude and frequency of the ac signal. The hysteresis in magnetoresistance and the observed sensitivity of the superconducting phase to the amplitude of the ac signal are indicative characteristics of granular or weakly linked filamentary superconductivity. These features taken together with the observed noise signature above TcT_{\mathrm{c}} suggests a link between the formation of the superconducting filamentary phase and the freezing of antiphase domain walls, known to exist in these materials

    Spectral fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin ice

    Get PDF
    Artificial spin ices (ASIs) are magnetic metamaterials comprising geometrically tiled strongly-interacting nanomagnets. There is significant interest in these systems spanning the fundamental physics of many-body systems to potential applications in neuromorphic computation, logic, and recently reconfigurable magnonics. Magnonics focused studies on ASI have to date have focused on the in-field GHz spin-wave response, convoluting effects from applied field, nanofabrication imperfections (‘quenched disorder’) and microstate-dependent dipolar field landscapes. Here, we investigate zero-field measurements of the spin-wave response and demonstrate its ability to provide a ‘spectral fingerprint’ of the system microstate. Removing applied field allows deconvolution of distinct contributions to reversal dynamics from the spin-wave spectra, directly measuring dipolar field strength and quenched disorder as well as net magnetisation. We demonstrate the efficacy and sensitivity of this approach by measuring ASI in three microstates with identical (zero) magnetisation, indistinguishable via magnetometry. The zero-field spin-wave response provides distinct spectral fingerprints of each state, allowing rapid, scaleable microstate readout. As artificial spin systems progress toward device implementation, zero-field functionality is crucial to minimize the power consumption associated with electromagnets. Several proposed hardware neuromorphic computation schemes hinge on leveraging dynamic measurement of ASI microstates to perform computation for which spectral fingerprinting provides a potential solution
    • …
    corecore